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For k --> 0, let ~r~: Tk+I(M) = T(Tk(M)) ---> T~(M) denote the (k + l)th iterated 
tangent bundle in relation to a base manifold T~ = M. Let V represent a 
possibly nonstationary vector field over T~(M), and let Q be a subset/submanifold 
in Tk(M). Sufficient conditions (and, when V is completely integrable in Q, 
necessary and sufficient conditions) are established to ensure that all solutions g 
to y' = V(t, y) lying entirely in Q have the form G = ~kl, whereg4kl is the kth- 
order differential lift of a curve flying in M. The relevance of the issue for higher 
order dynamical systems (especially in mechanics) is discussed. Higher order 
involutions and complete vector field lifts are examined from the viewpoint of 
the differential equations they present. Collateral results on the general solvability 
of initial value problems are obtained and numerous examples are discussed 
in detail. 

1. I N T R O D U C T I O N  

The underlying scalar field is fixed: K = R or C. Let M be a differentiable 
manifold modeled on a K-Banach space F. Let (T~(M), "trk)k>_O represent the 
full tangential  resolution for M, i.e., T~ = M, and "try: Tk+t(M) = T(Tk(M)) 
---> Tk(M) is the standard tangent  bundle  map. 

With U open in K, let f." U ---> M be a differentiable K-curve in M. Then  
f ' :  U ---> T(M) will denote the standard differential lift o f f  to T(M). Iteratively, 
w i t h f  I~ = f,  letflk+ll:  U ---> Tk+t(M) be given b y f l  k+ll = (flk]),. 

Let V be a K-dependent  (k + 1)-level differentiable vector field over 

M. That  is, with W open in K, V: W X Tk(M) --> Tk+I(M) is differentiable 
and (~rk o V)(t, y) = y always holds. By the differential lift equation (= ODE) 
associated with V we shall mean  the formal expression y '  = V(t, y), a solution 
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to which is a differentiable K-curve g: U --~ Tk(M), with U open in W, such 
that g'  = V(t, g(t)) always holds. By an initial value problem associated with 
V we mean an expression (V, s, p), where s and p are chosen from W and 
Tk(M), respectively, a solution to which is a solution g to y' = V(t, y) such 
that g(s) = p. [We shall regard the case of a stationary vector field V: Tk(M) 
---> Tk+~(M) as a variant of the foregoing idea, the relevant equation being 
y' = V(y), a solution to which is a K-curve g such that g'(t) = V(g(t)) 
always holds.] 

Let Q be any nonempty subset of Tk(M). With V as above, let ord(V, 
Q) denote the maximum integerj + 1 -< k + 1 such that every g solving y' 
= V(t, y) and lying entirely in Q can be expressed g = ful ,  where f is a K- 
curve taking its values in Tk-J(M). We call ord(V, Q) the order of V relative 
toQ. 

The Lift Order Problem 

With k > 0 and with M, V, and Q as above, determine whether 
ord(V, Q) = k + 1. 

Note. In the present paper we also deal briefly with the related problem 
of determining whether every initial value problem (V, s, q) with q in Q has 
a solution lying entirely in Q, i.e., of determining whether V is completely 
integrable over Q. When ord(V, Q) = k + 1, we shall call Vk-suitable over Q. 

Rationale 

In their classic paper on sprays, Ambrose et al. (1960) initially define 
sprays in terms of curves/flows in M. Then they give the formulation in terms 
of a stationary vector field V." T(M) ---> T2(M) subject, in their notation, to 
d~rV(x) = x, where x is in T(M). The latter requirement is precisely what 
ensures that all solutions g to y' = V(y) have the form g = f ' ,  i.e., that the 
integral curves g for V all occur as lifts of curves in M. And it is this property, 
in turn, which establishes the relationship of sprays to connections, with 
the attendant meanings attaching to normal coordinates, geodesics, parallel 
translation, etc. 

The same order issue is encountered (and resolved) in mechanics. Fol- 
lowing the exposition in Abraham (1967), one begins, let us say, with a 
regular Lagrangian L: T(M) ----> R. Then, passing through a well-defined series 
of constructions, one eventually comes to a Hamiltonian vector field VL: 
T(M) ---> T2(M), and the equations of motion are given as y' = V~.(y). The 
crucial step in the process comes in proving that, as with sprays, d~VAx) = 
x, where x is in T(M). Again, the requirement is what ensures that solution 
curves g all arise from motion curves f i n  the configuration space M. In fact, 
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we take it as a reasonable piece of general doctrine to insist that any dynamical 
system, defined through whatever combination of differential and integral 
mechanisms, must ultimately have its solutions represent curves in the base 
configuration manifold M. 

As we will show, both in general theory and by example, when k > 1 
it is never the case that a smooth (=completely integrable) vector field over 
Tk(M) has all its solutions g of the form g = ftkl. There are always unicorns 
among the horses, so to speak. Indeed, as we will see, there are always 
vectors x in Tk(M) that are simply beyond the reach of any lifted curve ftkj. 
In short, regardless of how one arrives at equations of motion y'  = V(t, y) 
over Tk(M), with k > 1, if the equations are to be meaningful in the end, 
one has no alternative to the following program: 

1. Specify subsets/submanifolds Q in Tk(M)--subuniverses of 
motion--relative to which V is completely integrable. 

2. With Q as in 1, ensure that V is k-suitable relative to Q. 

(In general, if V exhibits both properties 1 and 2 relative to Q, we shall 
call V completely k-integrable relative to Q.) 

To my knowledge, not one paper in the existing journal literature deals 
with the order problem per se above the k = 1 level. It is my intention to 
present a few easily remembered principles governing the order problem in 
general, but to focus most attention on examples, since it is apparently a new 
field of inquiry. It is hoped that these examples will not be seen as pathological. 
While each has been constructed to illustrate something in particular, the 
examples represent normal behavior. Indeed, it is the exceptional higher 
differential level vector field all of whose differential lift solutions have the 
same (and appropriate) order. The approach to the subject matter in this paper 
is as follows: 

1. We study the examples first by directly solving the relevant equations 
and then seeing how solutions behave in relation to the various 
submanifolds. 

2. We develop a general theory of order. 
3. We reexamine the examples in light of the general theory, to see 

how much of the behavior of solutions can be deduced without 
directly solving the equations. 

Before proceeding to our first example, however, a great deal of needless 
calculation and possible conceptual misunderstanding can be avoided through 
an easy generalization of the curve lifting technique (a generalization we 
shall need in the general order theory anyway). Let f." N ~ M be any 
differentiable map of manifolds; let a': T(N) ~ N be the tangent bundle 
projection; and let (Tk(M), ~rk)k>_O be the full tangential resolution for M. Let 
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W: N --+ T(N) be any stationary vector field, i.e., "r o W = idN. We define 
the W-lift o f f  to be the map f~v: N ~ T(M) given by f~r = T(f) o W, where 
T(f): T(N) ---> T(M) denotes the standard tangent map associated with f 
Iterating this idea, w i t h f ~  = f ,  for k --> 0 , f~+q:  N --> Tk§ is given by 
f~+q = (f~)~v. We c a l l f ~  1 the kth-order differential lift o f f  relative to W. 

Note. When N is an open set in K, the global coordinate system allows 
us to write T(N) = N • K, and "r is represented as a projection on the first 
factor. In this context, which is our primary concern in this paper, we may 
take W to be the standard cross section, i.e., W(t) = (t, 1). Then our definition 
o f f ~  coincides with our previous unsubscripted version. 

Proposition 1. Let 1 <-- j --< k, and let g: N ---) Tk(M) and f: N --+ Tk-J(M) 
be differentiable maps related by g = f~wl. T h e n f i s  unique with this property 
in relation to g: f = ~rk-: . . . .  o "trk_ ~ o g. 

Proof This is a straightforward induction on k, bearing in mind general 
commutativity for tangent maps, and will therefore not be written down. 

In words, when g is a lift from a lower tangential level there is no doubt 
about what f it is the lift of: f is just the composite projection of g down to 
this level. 

Example 1 

Let V'. T(K) = K 2 --> TZ(K) = K 4 be given by V(xo, xO = (Xo, xl; xt 
- x0, 0). Any solution g = (go, g0  to y '  = V(y) must satisfy 

g'(t) = (go(t), gl(t); d/dt[go(t)], d/dt[g~(t)]) 

= V ( g o ( t ) ,  g~(t)) 

= (go(t), gl(t); gl(t) - go(t), O) 

Integration yields (1) g~(t) =-- B and (2) go(t) = B - Ae -t, where A and B 
are arbitrary constants. 

Now, for a solution g as in (1) and (2) to be of the form g = f ' ,  two 
things are required: f ( t )  = B - Ae -t, by Proposition 1, and dldt[f(t)] = gl(t) 
--- B. These two conditions can hold simultaneously if and only if A = B = 
0. Thus, in spite of the fact that V is completely integrable, the only lifted 
solution is the constant one: g(t) -- (0, 0). In fact, if  we consider V in relation 
to the punctured plane Q = K2\{ (0.0)}, relative to which V is also completely 
integrable, V has no solutions in Q that are lifts. 

We note in passing that there are many other constant solutions g to y '  
= V(y) that are simply not lifts: g(t) -- (B, B), where B 4: 0. Put differently, 
the connected zero-dimensional manifolds relative to which V is completely 
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integrable are the diagonal singletons {(B, B)}, precisely one of which (B = 
0) corresponds to a lifted solution. We also note that there are many submani- 
folds Q in T(K) relative to which ord(V, Q) = 2 (i.e., V is l-suitable over 
Q) vacuously (simply because there are no solutions g lying entirely in Q). 
For instance, let A in K be fixed and let QA = {(A, x0: xl :/: A}. Indeed, all 
solutions g are transversal to Q,~. 

To say that V as above lacks significance as a level-2 differential entity 
because of the behavior of the solutions to y '  = V(y)  is not to say that V 
lacks either physical or geometric meaning as a first level entity in its own 
right. In fact, let K = R, and let t in K be thought of as a time variable. Even 
though our solution set as in (1) and (2) constitutes a two-parameter family 
of distinct functions, two such functions g = (B - Ae  -t, B) and h = (B - Ce -t, 
B) can nevertheless carve out the same orbit (=  world line = submanifold). 

Case 1. A = C = 0. In this case g and h are identical and "parametrize" 
the zero-dimensional manifold { (B, B)} = B a'~ say. 

Case 2. A and C are both >0. In this case g and h are related by h(t 
+ Ln(C/A))  = g(t). Thus, g and h are but different parametrizations of the open 
horizontal ray lying to the left of the diagonal point (B, B), but approaching it 
with advancing time. Label this submanifold gB,-. 

Case 3. A and C are both <0. Again g and h are related by h(t + Ln(C/ 
A)) = g(t). This time the functions parametrize the open horizontal ray to 
the right of (B, B) and approach it [i.e., the curves approach (B, B) from the 
right with advancing time]. Label the submanifold itself gS.+. 

Geometrically, therefore, V carves up the K 2 universe into mutually 
nonintersecting zero- and one-dimensional subuniverses gB,-, gB,0, or gB.+. 
Since each of our integral curves g is maximal to begin with (because g is 
defined for all t), the totality of gB,-, gB,0, and gB,+ for all B comprises the 
phase  portrai t  f o r  V. 

Physically, V can be thought of as a generic capacity law (such as 
heating/cooling of an object placed in a constant-temperature = B bath). 

Example  2 

Let  V: T2(K) = K 4 ----) T3(K) = K 8 be given by 

V(Xoo , xol , xlo , Xll ) ~--- (Xoo , xol,  xlo , Xll;  X01 '~ Xll , Xll , Xll , 0 )  

T~en g = (goo . . . . .  gn)  solves y '  = V(y)  if and only if  (1) gH(t) -- D, (2) 
glo(t) -- D t  + C, (3) got(t) = Dt  + B, and (4) goo(t) = Dt  2 + (B + D) t  + 
A, where A, B, C, and D are arbitrary parameters in K. 

Case 1. C ~ B + D. Let h = (goo, got) (the l-level projection of g). 
Now g = h' would require d/dt[goo(t)] = glo(t) for all t, which is impossible 
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since C :/: B + D. Thus, none of the solutions g arising in this case can be 
lifts from lower levels. Note the following curious fact, however: h = (g00, 
g00 as above has its own lift h' as a solution to y'  = V(y), even though h' 
:/: g. That is, (h') '  = V o h'. (Example 1 shows dramatically that it is not 
generally the case that the lift of  the projection of  a solution is again a solution.) 

Case 2. C = B + D, with D ~ O. In this case, with h = (g00, g00, we 
find that g = h' always holds. However, g is not of  the form g = (g0o) t21, 
since the latter would require d2/df[goo(t)] - D 4: O, whereas V(g(t)) always 
has rightmost component -- 0. 

Case 3. C = B + D, with D = 0. In this case, one easily verifies that 
g = (g00) t21 holds. 

In summary, Example 2 presents a V having nontrivial solutions g of 
all possible orders. 

Example 3 

Let V: K • T(K) --> T~(K) be a K-dependent field given by V(t, (x0, 
x0)  = (Xo, xl; 1 + f - 2tXo + ~ ,  0). We consider a solution g = (go, gl) 
to an initial value problem (V, to, (x0, xl)). 

Case 1. to = x@ The  solution is g(t) = (t, xO. 

Case 2. to ~ Xo. The  solution is g(t) = (t - l l ( t  - to + 1/(to - x0)), x0.  
Now, Case 2 yields no solutions g of the form g = (go)', since dldt[go(t)] 

is nonconstant. On the other hand, Case 1 yields exactly one solution g with 
g = (go)': this occurs when xl = 1. Consider the submanifold Q = {(Xo, 1): 
:Co in K } in T(K).  V is completely integrable with respect to Q, since all 
solutions g meeting Q must lie entirely in Q, whether the solutions come by 
way of Case 1 or Case 2. But then V is not 1-suitable relative to Q, since 
not all these solutions are of  the form g = (go)'. This is true, note, even 
though Q is fully parametrized by the one (maximal) integral curve g that 
does have the form g = (go)'. 

Example 4 

By way of contrast with Example 3, let V: K • T(K) ---> T2(K) be given 
by V(t, (Xo, xt)) = (Xo, xl; t, 1). Easily, the general solution g = (go, g 0  is 
given by g(t) = (f12 + A, t + B). Such a solution is of  the form g = (go)' 
if and only if B = 0. Or, letting ga'B(t) = ( ~ ( t ) ,  g~(t)), only the solutions 
ga,0 are themselves lifts. 

For any C in K, let Qc = {( szl2 + C, s): s is in K}. Easily, ga,8 (or any 
restriction of ga.B to a nonempty open set in K) lies entirely in Qc if and 
only if A = C and B = 0. And, as in Example 3, the lifted solution gC.O, 
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which is maximal (it is defined over all of K), lies entirely in Qc. Thus, V 
is indeed 1-suitable over Qc, but V is dramatically not completely integrable 
over Qc. 

Example 5 

Let E T2(K) --4 T3(K) be given by 

V(xoo, Xol, Xlo, x11) = (Xoo . . . . .  xlt; Xol, O, O, O) 

Then, with g(t) = (goo(t) . . . . .  gll(t)), g'(t) = V(g(t)) amounts to (1) glt(t) 
= D, (2) glo(t) = C, (3) gol(t) = B, and (4) goo(t) = Bt  + A, where A, B, 
C, and D are arbitrary parameters in K. The solution to an initial value 
problem (V, to, (X0o . . . . .  x11)) is given by (1') gll(t)  = xll,  (2') glo(t) = Xlo, 
(3') gol(t) = x01, and (4') goo(t) = Xol(t - to) + Xoo. 

Observe that for g as in (1 ')-(4 ')  to be of the form g = (g0o) t2] it is 
necessary and sufficient that 

Xol = xl0 and Xll = 0 (*) 

We examine V in relation to five submanifolds Ql . . . . .  Qs in T2(K) with 
regard both to the lift condition (*) and to the general "solution-absorbing" 
properties of the submanifolds. 

Q1 = {(u, v, v, w): w 4: 0}. From (1 ')-(3 ' )  it is apparent that g(to) in 
QI implies that g(t) is in Q1 for all t. Thus, V is completely integrable relative 
to Ql. However, (*) is never satisfied when (X0o . . . . .  Xll) is in Ql. Thus, 
none of the solutions g meeting Q1 is of the form g = (g0o) t2]. 

Q2 = {(0, v, v, w): v :/: 0 :~ w}. This time any g solving the initial 
value problem with (X0o . . . . .  Xl0 in Q2 is completely transient relative to 
Q2- That is, from (4') and the fact that x01 4= 0 we see that to is the .only 
argument value t for which g(t) is in Q2- Thus, vacuously, V is 2-suitable 
relative to Q2: there simply are no solutions g lying entirely in Q2 to consider 
regarding (*). 

03 --- {(u, v, v, 0): u, v in K}. As in the case of Ql, V is completely 
integrable relative to 03. Moreover, (*) holds whenever (X0o . . . . .  x11) is in 
Q3- Thus, V is completely 2-integrable relative to 03. 

Q4 = {(0, v, v, 0): v :/: 0}. As with Q2, any solution g to an initial value 
problem set over Q4 is completely transient with regard to Q4: to is the only 
value for t such that g(t) is in Q4. Thus, again, V is vacuously 2-suitable 
relative to 04. This time, however, each g solving an initial value problem 
set over Q4 is of the form g = (g0o) [21, even though such a g is completely 
transient relative to Q4. 

Q5 = {(u, v, 0, 0): v 4= 0}. Clearly, an initial value solution g set over 
Q5 has the property that g(t) is in Q5 for all t. Thus, V is completely integrable 
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relative to Qs. However, (*) is never satisfied when (X0o . . . . .  xH) is in Qs. 
Thus, V is extremely "un-2-suitable" relative to Qs- 

In summary, Example 5 reveals the astonishing variety of behaviors 
even a very simple "higher order" vector field V can exhibit, as regards both 
lifted solutions and solution-absorbing properties, for various submanifolds Q. 

Example  6 

Le t  V'. T2 (K)  ~ T3(K) be given by 

V(xoo . . . . .  Xll) = (Xo0 . . . . .  Xll; Xol, Xt0 -- X0t, Xtl, 0) 

Any solution g to y '  = V(y )  must take the form (1) gt l ( t )  --  D,  (2) gxo(t) = 
D t  + C, (3) gol(t) = (C - D)  + Dt  + Be  -t ,  and (4) goo(t) = A + (C - D) t  
+ Dt212 - Be  -t,  where A, B, C, and D are arbitrary parameters in K. In turn, 
the solution g to an initial value problem (V, to, (Xoo . . . . .  xl0) is given by 

(1') g l l ( t )  ~ Xl l  

(2') g l 0 ( t )  = X l l ( t  - -  to) + XI 0 

(3') g o l ( t )  = (Xl0 - -  Xl l  ) -I- X l l ( t  - -  to) + (X01 - -  Xl0 + Xl l  ) e t o - t  

(4') goo(t) = Xoo + (xll  - Xlo)(t0 - t) + (to - t)Zxlll2 

+ (XI0 - -  X01 + X l l ) ( e  tO- t  - -  1). 

We consider V relative to two submanifolds Q1, Q2 in T2(K). 
Q1 = {(x0o . . . . .  xll): x01 = xt0 and xll 4= 0}. Observe that each solution 

curve g as in (1')-(4') ,  where (X0o . . . . .  Xll) is in Q1, meets QI for only the 
one value of its argument: t = to. Thus, V is completely transient relative to 
Q~ and hence it is 2-suitable relative to Q~ vacuously. 

Q2 = {(x0o . . . . .  Xll): Xol = Xl0 and Xll = 0}. This time, every solution 
g in the form (1')-(4 ') ,  with (X0o . . . . .  Xl0 in Q2, lies entirely in (22 and also 
has the form g = (g0o) t2J. Thus, V is completely 2-integrable relative to Q2. 

In summary, Example 6 presents a situation in which V could not behave 
more antithetically in relation to two submanifolds Q~ and Q2. And yet, 
topologically, Q2 = the boundary of Qt, exclusive of Q~ itself. 

What the foregoing examples indicate about the order problem, at least 
by way of general disclaimer, is this: the order problem is not about smooth- 
ness (every function in sight is analytic); nor is it about local/global distinc- 
tions (each manifold has a global coordinate system, and each solution curve 
g is defined for all possible values of its argument variable t); nor is it about 
what one might otherwise anticipate as a harmonic interplay between manifold 
and boundary. We now turn to the development of a general order theory. 
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2. GENERAL ORDER THEORY 

We return to the general differential lift context of Proposition 1, i.e., 
W: N --> T(N) is a fixed stationary vector field, our "curves" are simply 
differentiable mappings defined on open sets in N, and our curve lifts are 
relative to W. 

Let E N • Tk(M) ---> Tk+I(M) be an N-dependent (k + 1)-level vector 
field over Tk(M), i.e., ('trk o V)(t, y) = y always holds. By the (ordinary) 
differential lift equation associated with W and V we shall mean the formal 
expression y~, = V(t, y), a solution to which is a differentiable map g: U ---> 
Tk(M), with U open in N, such that g~(t) = V(t, g(t)) always holds. [We can 
formulate this in terms of  the graph of  g, gr(g), given by gr(g)(t) = (t, g(t)), 
by saying g~v = V o gr(g).] By an initial value problem associated with W 
and V we mean an expression (W, V, s, p), where s and p are chosen, 
respectively, from N and Tk(M), a solution to which is a g solving y~v = V(t, 
y) such that g(s) = p. [All the terminology used previously--complete integ- 
rability, k-suitability, ord = ord(W, V, Q) - -ca rdes  over into this more gen- 
eral context.] 

Again, let (Tk(M), ~rk)k>_O denote the full tangential resolution for the  
manifold M. As is well known, for k >-- 1, there is a multiplicity of "projec- 
tions" Tk-i('tri) from Tk§ to Tk(M), where 0 <- i <-- k, the tangent bundle 
projection being the one where i = k. We define two sequences of  sets 
(kM')k>-O and (kM)k>-0 as follows: 

oM' = T(M) 

and (k >-- 1) 

kM' = {x in Tk§ 0 <-- i , j  < k implies Tk-i(~ri)(x) = Tk-J(~rj)(X)} 

Then let 0M = M; let IM = T(M); and let (k -> 1) 

k§ = {x in kM': xrk(x) = T('tr~-l)(x)} 

Proposition 2. 1. (k -> 0) "a'k carries kM' (and its subset k+lM) into kM. 
2. (k --> 1) T0rk-0  carries kM' into k - lM ' .  
3. L e t ~  U ---> M be a differentiable map and let k > 0. Then Tk+l(f) 

carries kU' into kM', and it also carries k+~U into k§ 
4. Let W: U ---> T(U) be a differentiable cross section of  "r 0, where 

(Tk(U), "r~)k_>o is the full tangential resolution for the manifold U. Let k -> 
1 and let 0 < i < k. Then 

T k - i ( T i )  o [Tk(W) . . . . .  W] = T k - l ( W )  o . . . .  W 

In particular, [Tk(W) o . . .  o W] lies entirely in m U .  
5. With f as in statement 3 and with W as in statement 4, for all k -> 

O, flkwl: U ---> Tk(M) lies entirely in kM. 
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P r o o f .  1. We need only consider k ----- 1. Let i, j be arbitrary, with 0 --< 
i, j < k, and let x in T k + l ( M )  b e  such that Tk- i (Tr i ) ( x )  = Tk-J('rry)(X). Then 

T k - l - i ( ' f f  i)( ('ff k)(X ) ) 

= ( T k - l - i ( T r i ) O q r k ) ( X  ) 

---- ( ,1rk_ 1 o Tk-i(,ITi))(X) 

= (Irk-1  ~ Tk-J(~r j ) ) (X)  

= T k-  l-J(,iTj)(,'ffk(X)) 

Since i, j were arbitrary, the result follows immediately. 
2. The argument is quite similar to that given in part 1. 
3. This result follows from 

T k - l ( f )  o T k - l - i ( T i )  = T k - l - i ( , f f i  ) o T k ( f )  

T k - l ( f )  o T k - t - J ( , r j )  = Tk - l - J ( , r r j )  o T k ( f )  

These each hold by the standard commutativity of tangent maps in relation 
to projections. 

4. We first argue all cases where i = k. Then, with the result in hand 
for these cases, we argue the cases 0 --< i < k by induction on k. 

For the cases i = k, one has, by tangential commutativity, 

'rk o [ T k ( W )  . . . . .  W ]  

= Tk o T [ T k - I ( W )  o . . .  o W ]  

= [ T k - I ( w )  . . . .  o TO ] o W 

= T k - I ( w )  . . . . .  W o (,to o W )  

= T k - l ( W )  . . . .  o W o i d u  

= T k - i ( W )  o . . .  o W 

as required. 
For the cases 0 --< i < k, consider first k = 1: 

T(,ro) o T(W) o W = T('r0 o W) o W = T(idu) o W = W 

Now, inductively, assume the result for all 0 --< i < k (beating in mind that 

we separately know that the result holds for i = k as well.) Consider 0 < i 

< k +  1. Wehave  

Tk+l-i(Ti)  o T k + l ( w )  o . . . .  W 

= T[Tk- i (T i )  o T k ( W )  o . . .  o W ]  o W 

= T [ T k - I ( W )  o . . .  o W ]  o W 

= TkfW)o .... W 
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as required. 
5. We need only consider k --> 1. We can rewrite the inductive formulation 

offlw kl as ftkl = Tk( f )  o T k - l ( W  ) . . . . .  W. By part 4 of this proposition, 
Tk-~(W)  . . . .  o W lies entirely in kU. Thus, by part 3 of this proposition, 
Tk( f )  o [Tk-1(W) o . . . .  W] lies entirely in kM. 

It is in the exact sense of  part 5 of the proposition that we intended the 
remark in the Introduction (Rationale) to the effect that, for k > 1, most x 
in Tk(M)  are beyond the reach of curve lifts from M. For instance, in the 
finite-dimensional case, dim(Tk(M)) = 2 k dim(M), whereas the subspace [in 
fact it is always a submanifold of  Tk(M)] k M h a s  dim(kM) = (k + 1) dim(M). 

Theorem 1. 1. (k -> 0) Let W: U ---> T(U)  be a tangent bundle cross 
section and let g: U --+ Tk(M)  be differentiable, with g lying entirely in kM. 
Then T(g)  lies entirely in k M ' .  In particular, g~, lies entirely in k M ' .  

2. (k --> 1) With W and g as in part 1, then g is of the form g = f~w kj if 
and only ifg~v lies entirely in k+lM. (In this c a s e f  = "tro . . . .  o "trk-1 ~ g, and 
g itself necessarily lies entirely in kM.)  

3. (k --> l) Let V: N • Tk(M)  --+ Tk+~(M) be an N-dependent differentiable 
vector field over Tk(M),  and let g: U --+ Tk(M),  where U is open in N; solve 
Y{v = V(t, y).  Then g is of  the form g = ~ J  if and only if V o gr(g) lies 
entirely in k+l(M). 

Proof. 1. We need only consider k -> 1. Let 0 --< i, j < k. Then 

Tk- i ( . f f i  ) o T(g) 

= T ( T k - l - i ( T t i )  o g)) 

= T(Tk- i -J (~j )  o g)) 

= Tk-J(Trj) o g 

as required. 
2. If g = ft~J, then g~, = (ftkJ)~v = ftwk+q lies entirely in k§ by part 5 

of  Proposition 2. To see the converse (that g~, lying entirely in k+~ M implies 
g has the form g =  ftwkl), we argue by induction on k. 

k = 1: ['a'0 o g]~, = T(,tr 0 o g) o W = T(-a'0) o (T(g)  o W )  

By the hypothesis of the theorem, the latter quantity 

= "trl o (T(g) o W )  = (~l  ~ T(g)) o W = (g o %) o W 

= g o (% o W )  = g o idt/ = g 

Inductively, assume the result for k and let g take its values in Tk+~(M) with 
g~v lying entirely in k+2 M. 
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We consider the one-step projection of g: ['trk o g] taking its values in 
Tk(M). By part 1 of Proposition 2, since g~v lies entirely in k+zM C k+tM', 
"a'k+l o g~, = g lies entirely in k+tM. But 

[~ri o g]~r = T(~rk) o T(g) o W = T(ark) o g~r 

By the hypothesis on gw, the latter quantity = wk+t o g~, = g, which, as we 
have just seen, lies entirely in k+lM. 

Thus, we may apply the induction hypothesis to ['rrk o g] and write 

['rrk o g ]  = ['rr0 . . . .  o "rrk-i o ['rrk o g ] ] ~ l  

Now simply lift both sides of the latter equality to arrive at the desired form 
for g. 

Note. The parenthetical remark, although we have in essence proved it, 
was already seen to be true in the context of the more general statement of 
Proposition 1. 

3. Since g~, = V o gr(g), this result is an immediate consequence of part 
2 of the theorem. 

Corollary. With general conditions as in the theorem, consider an initial 
value problem (W, V, to, Xo). 

1. If x0 is not in kM, no solution g has the form g = f~w ~l. 
2. If V(to, Xo) is not in kM' ,  no solution g lies entirely in kM (whence, 

no solution g has the form g = ftwkl). 
3. If V(to, Xo) is not in k+l M, then no solution g has the form g = flwkl. 
4. If V carries N • Q into k+t M, then V is k-suitable relative to Q. 
5. Assume V is completely integrable relative to Q. Then V is completely 

k-integrable relative to Q if and only if V carries N X Q into k+l M. 

Proof. 1. If  g were of the form g = ]fw kl, then, by the parenthetical remark 
in part 2 of the theorem, g(to) = Xo would lie in kM. 

2. This follows from part 1 of the theorem, since g{u(to) = V(to, g(to)) 
= V(to, Xo) 

3. This follows from part 2 of the theorem, since, again, g~to)  = V(to, 
g(to)) = V(to, Xo) 

4. Since any solution g satisfies g~v = V o gr(g), the assumption, together 
with the assumption that g lies entirely in Q, would ensure that g{v lies entirely 
in k§ M. The result then follows from part 2 of the theorem. 

5. By part 4 of the corollary, we need only show that V k-suitable relative 
to Q implies V carries N • Q into k§ M. In this, the general assumption that 
V is completely integrable relative to Q is crucial. For, consider any (to, x0) 
in N • Q. We can solve the initial value problem (W, V, to, x0) by means of 
a g lying entirely in Q, where (by k-suitability) g is of the form g = ~w ~1. By 
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part 2 of the theorem, g{r must lie entirely in k+l M. In particular, g~to) = 
V(to, :Co) must lie in k+l M. 

Remarks. 1. Assertion 4 in the corollary cannot be made an if-and-only- 
if assertion without strong surrounding conditions as in assertion 5. Our 
Example 4 serves as a counterexample. 

2. Observe that assertions 4 and 5 in the corollary (especially assertion 
5) do not even require that Q be a submanifold of  Tk(M); Q is just a subset. 
However, as a practical matter, how can one ensure that a vector field V is 
completely integrable over a set with no additional differentiable structure? 

3. ON G E N E R A L  SOLVABILITY OVER SUBMANIFOLDS 

To begin with, one has difficulties regarding submanifolds in the general 
Banach context that one does not have in finite dimensions. Even when Q~ 
and Q2 are Banach spaces, with QI a (closed) subspace in Q2, one cannot be 
sure that the sheaf of  intrinsically differentiable functions on Ql coincides 
with the "pullback" sheaf from Q2. That is, one cannot be sure that each 
differentiable function on an open set in Ql is locally expressible as restrictions 
of  differentiable functions from the sheaf on Q2- In practice, one needs a 
continuous linear projection L from Q2 to Q1 which serves as a left inverse 
to the inclusion map from Ql to Q2. When Ql and Q2 are Banach manifolds, 
the desired effect is achieved if the inclusion map from Qj to Q2 has local 
differentiable left inverses. Let Q1 and Q2 be manifolds, therefore, with i: 
Ql ---> Q2 denoting the (differentiable, we assume) inclusion map. We say QI 
is strongly embedded in Q2 if  the following two conditions are met: 

1. If U is a differentiable manifold and g: U ---> Q2 is a differentiable 
map, then h: U ---> Q1 is also differentiable, where h is just g considered as 
a map into QI, that is, i o h = g. 

2. T(i)(T(QO) is itself a submanifold in T(Q2), with what corresponds 
to requirement 1 holding between T(i)(T(QO) and T(Q2); and also T(i) - l ,  
considered as a map from T(i)(T(QO) to T(QO, is differentiable. 

Note. In the finite-dimensional case, embedded implies strongly embed- 
ded, and in the general Banach case, the existence of local left inverses for 
i ensures a strong embedding. 

In general, with Q1 an embedded submanifold in Q2 and with i: Ql ---> 
Q2 denoting the inclusion map, let V." N • Q2 ---> T(Q2) be a differentiable 
N-dependent vector field over Q2. We say that V is closed relative to Q~ if 
V(N • QO is contained in T(i)(T(QO). 

Theorem 2. Let Q1 be strongly embedded in Q2, with i denoting the 
inclusion map. Let g: U ---> Q2 be differentiable. Let V." N • Q2 ---> T(Q2) be 
an N-dependent differentiable vector field over Q2. 
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1. g lies entirely in Q1 if and only if g~, lies entirely in T(i)(T(QO), 
where W: U ---> T(U) is any differentiable cross section of  the tangent bundle 
map T(U) --> U. 

2. With W as in part 1, let U be open in N and let g: U ---> Q2 solve 
y~v = v(t, y). Then g lies entirely in Q1 if and only if V o gr(g) lies entirely 
in T(i)(T(QI)). 

Note. In parts 3 and 4 of  the theorem, we assume N is an open set in 
K and that W is the standard cross section. 

3. V is completely integrable relative to Ql if and only if V is closed 
relative to Ql- 

4. Assume Q2 is itself an embedded submanifold in Tk(M). Then V is 
completely k-integrable relative to QI if and only if V(N • QO is contained 
in the intersection of  k§ M and T(i)(T(QO). 

Proof. 1. If g lies entirely in Q1, then g can be realized as g = i o h, 
where h: U ---> Ql is differentiable. But certainly h~v = T(h) o W lies in 
T(QO. Thus, 

g~v = T(i o h) o W = T(i) o (T(h) o W) = T(i) o h~r 

lies in T(i)(T(Q1)). 
Conversely, let g~v lie entirely in T(i)(T(QO). Let xr: T(Q2) ---> Q2 and 

p: T(QI) ---> Ql denote, respectively, the tangent bundle projections. For each 
t in U, let w(t) denote the (necessarily unique) element in T(QO such that 
T(i)(w(t)) = g~(t) = T(g)(W(t)). Let h(t) = p(w(t)). Then 

(i o h)(t) = i(p(w(t))) = "tr(T(i)(w(t))) = 7r(g~t)) = g(t) 

Thus, g(t) must lie in Q1- 
2. This follows immediately from part 1 of  the theorem, since gw' = V 

o gr(g). 
3. Assume that V is completely integrable relative to Qt, and consider 

(relative to Q2) an initial value problem (W, V, to, q0,  where ql is in Q~. By 
assumption, there is a (necessarily unique, by smoothness) g: U --) Q2 solving 
the initial value problem with g lying entirely in QI. Let h: U -~ QI be the 
differentiable map such that i o h = g. Then 

T(i)(h'(to)) = (i o h)'(to) = V(to, g(to)) = V(to, ql) 

So the necessity of  closure is clear. 
Conversely, assume that the closure criterion is met. Define a smooth 

vector field X: N • Ql ---> T(QI) by X = T(i) - l  o V, where V is restricted to 
N • Q~. By the fundamental existence/uniqueness theorem, since X is smooth, 
X is completely integrable over Qt. Let h solve any initial value problem (X, 
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to, q0. Then, easily, g = i o h solves (V, to, q0, and g lies entirely in Q1. In 
short, V is indeed completely integrable relative to Q~. 

4. This result follows immediately from part 3 of this theorem and from 
part 5 of the corollary to Theorem 1. 

Remark. In parts 3 and 4 of Theorem 2, we have not made the most 
general assertions possible, because we have specialized the context. How- 
ever, it is the context of primary interest where curves are concerned. And 
a broader spatial assumption for the independent variable t, together with 
alternative cross section W, would oblige us to resort to the Frobenius symme- 
try theorem in place of the smoothness-based ordinary existence theorem. 

4. INVOLUTIONS AND C O M P L E T E  VECTOR FIELD LIFTS 

Since its introduction by Kobayashi (1957) the general differential field- 
lifting technique, based upon second-order involution, has been the object 
of study or use by numerous investigators. The specific problem is the lifting 
of fields of both tensor and nontensor type by means of tangent maps in a 
way that preserves type and standard operations (such as the Lie bracket.) 
The general problem was what motivated Bowman (1970a, b) to introduce 
the notion of a restricted (= canonical, in the language of Bowman) tangential 
resolution of a manifold M. Indeed, it was the desire to place such construc- 
tions on a firm Kleinian group representational context that motivated Bow- 
man and Pond (1975). The present purpose, however, is to examine the 
technique as it applies to stationary vector fields from the standpoint of the 
differential lift equations generated, focusing especially on their order aspects. 

We review the definition and most basic properties of a (second-order) 
involution. Let P be any differentiable manifold and let p: T(P) ---> P and IX: 
T2(p) ---> T(P) denote the respective tangent bundle projections. One has a 
diffeomorphism Ip: T2(p) ---> T2(p) given, in local coordinates, by 

/p([T(0), Xoo, x01, Xlo, Xlt]) = [T(0), Xoo, Xlo, Xol, Xll] 

Then 11, satisfies It, o Ip = idr2w) (the reason for calling le an involution); le 
o Ix = T(p); and, in our language, x is in 2P if and only if Ie(x) = x. 

Now let 1 - j --- k. Let M be any differentiable manifold with full 
tangential resolution (Tn(M), ~rn)n>_O. Then one has an involution 

Tk-J(Irj-l~M)): Tk+l(M) --> Tk+l(M) 

satisfying the structural equation 

Tk- j+ l ( ' f f j  - 1) o Tk-J(Ir j-  l<M)) = Tk-J ( , f f j )  ( * )  
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Thus, we have a multiplicity of maps Tk+I(M) ----) Tk+l(M), just as we 
have a multiplicity of "projections" Tk+I(M) --~ Tk(M). They are strongly 
interrelated, as shown in the following result. 

Theorem 3. Let k --> 1. Then: 
1. For l --< j --< k, 

Tk-J(I#-I<M))(X) = X 

if and only if 

Tk- j+ l ( , r i ' j _ l ) (X)  = T~-Y(xrj)(x) 

2. x is in k+l M if and only if 

x = /rk-I~M)(X) . . . . .  Tk-I(IM)(X) 

3. Let V'. M ---> T(M) be a stationary differentiable vector field. Let 

V~ = Irk-l~a) o . . . .  Tk- l ( Ig)  o T~(V): Tk(M) ---) Tk+I(M) 

Then Vk is itself a vector field [called the complete lift o f  V to Tk(M)]. 
4. Let ft. U --> M be a differentiable map, where U is open in the 

differentiable manifold N. Let W: T(N) --~ N be a differentiable cross section 
of the tangent bundle map. Then: 

(a) f so lves  Y~v = V(y) if and only if 
(b) ftkJ solves u~v = Vk(u) if and only if 
(c) f solves ,,tk+ll = [Tk(V) . . . .  o T(V) o V](v). "W 

Proof. 1. Assuming Tk-J(ITJ-I(M))(X) = X, simply apply the structural 
equation (*) to yield Tk-J+l('trj_O(x) ---- Tk-J(~j)(x). [Note: The equation (*) 
itself is merely the result of successive applications of T to the basic commuta- 
tivity relationship among Ir~-~<M), T('rrj_l), and arj.] 

The converse argument is more complicated. First observe that all maps 
involved leave the base point in M unmoved. Then, since involution (and, 
hence, all higher tangential versions of it) is preserved under differentiated 
coordinate maps (indeed, it was this phenomenon that allowed involution to 
be defined as a global manifold map in the first place), it suffices to replace 
M by the Banach space F upon which M is modeled and prove the result there. 

Let (Tn(F), Ctn)n_>0 denote the full tangential resolution for the Banach 
space F, where, owing to the global coordinate system for F, we can treat 
Tn+I(F) as Tn(F) • Tn(F) always. 

In addition to being bundle spaces, the various T~(F) can also be viewed 
as Banach spaces. In this regard, all the various projections, involutions, and 
their higher tangential extensions are continuous linear maps. And for any 
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continuous linear map L, one has the fact that T(L)(x; y) = (L(x); L(y)) .  We 
simply use this fact on the relevant maps in an inductive argument on k --> 1. 

k = 1: In this c a se j  = 1 as well, and the assertion to be proved is: 
IF(X) = X if and only if T(eto)(X) = cq(x), which obviously holds. 

Assume the result holds for k, inductively, and consider 1 - j -< k + 
1. Now for j = k + 1, the assertion is just that Irk(F)(X) = X if and only if 
T(etk)(x) = Ctk+l(X), which, again, is just one of  the basic facts about second- 
order involutions. Thus, we are left with only the cases 1 -< j --< k to consider. 

It is convenient to write x in split form: x = (x0; xO. Bearing the 
general observation in mind about L above, we are left with three quantities 
to compare: 

(A) Tk+l-J+l(Ctj-L)(X) = (Ttc-J+l(otj-l)(Xo); Tk-J+l(Otj-t)(Xl)) 
(B) Tk+l-J(otj)(X) = (Tk-J(Otj)(Xo), Tk-Y(ctj)(xl)) 
(C) Tk+~-J(IrJ-~{F))(X) = (Tk-J(/rJ-q~))(x0); Tk-J(IrJ-tr 

But, bearing in mind the induction hypothesis, in relation to each coordinate 
position on the right in (A), (B), and (C), it is evident that A = B implies that 

Tk+l-J(lrJ-lr = (Xo, Xl) = X 

which completes the induction. 
2. This result follows immediately from part 1. 
3. We need to show that "irk o Vk = idrkr This is a straightforward 

chain of  reductions using the structural equations (*): 

"trko Irk-lr o . . .  o Tk-l(IM) o Tk (V)  

= TOrk-1) o T(Irk-2fu)) o... o Tk-l(lu) o Tk(V) 

. . .  

= Tk-1(~l) o Tk-l(lu) o Tk(v) = Tk(qro) o Tk(V) 

= Tk(.tro o V) = Tk(idM) = idrkfu) 

as required. 
4. As in part 3 above, we prefer to argue the matter informally as a 

series of successive reductions/extensions rather than as a formal inductive 
argument. 

(c) implies (a): Assumef tk+q = Tk(V) o .... T(V) o V of. By Theorem 
I, we know thatf tk+tl lies entirely in k+tM. Thus, we can apply rCk or Tk(~ro) 
tOJ~w k+~] with the same effect. Apply "rrk to the left side of the equation and 
TkOro) to the right side. The result is the reduction f tk~ = Tk-~(V) o ... o V 

of. In a similar fashion, apply "trk-i and Tk-tOro) to reduce the level of the 
equation a step further. Continuing in this manner, one eventually arrives at 
the desired result: f~, = V o f. 
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(a) implies (c): We begin w i t h f  tlj = V of. First apply T, and then apply 
Won the extreme right of each member of the resulting equation. One obtains 

ft2wl = T(V) o T( f )  o W,, which in turn = T(V) oft11 = T(V) o V o f.  Continue 
to apply T and W in this manner. We eventually arrive at the result ft~, +q = 
Tk(V) . . . .  o T(V) o F of.  

(b) implies (a): We start w i t h f ~  +lj = Vk oftkl. Beating in mind that, 
from part 2 of the theorem, applying Irk-t~M) to ftwk+ll has no effect since 
ftwk+q lies in k+lM, and also that Irk-lte) is involutive, apply Irk-l~m) to our 
starting equation. Collecting terms appropriately, we obtain the result ~ k+ll 
= T(Vk-1 oj4k-II) o W. Let "r: T(U) --> U denote the tangent bundle projection. 
Next, bearing in mind general tangential commutativity, apply "a'k to both 
sides of the equation immediately above. Since a" o W = id e,  the result is 
the reduction~ kl = Vk-i oftk-ll .  Next apply lri-2<~) and "rrk_ l in succession 
(if necessary) to reduce the level of the equation one step further. Continuing 
in this manner, one eventually arrives at the result f~r = V o f. 

(a) implies (b): Start with f~v = V of. Execute the following three-step 
procedure on the equation: (i) apply ~ (ii) apply W on the extreme fight of 
each member of the resulting equation; (iii) apply the appropriate/-involution 
to the equation resulting from (ii). The overall result is a simultaneous lift 
of both equation and solution: ft21 = Vt ~ Simply continue to apply steps 
(i)-(iii) repeatedly to arrive at the end result: ftk+ll = Vt o ftkJ. 

Major Remark. Observe that part 4 of Theorem 3 merely asserts the 
equivalence of three sets of equations for a certain class of functions. 
The result is virtually meaningless, in the absence of deeper information on 
the existence of solutions to initial value problems in any of the three contexts. 
It is just such information that the general order theory (in particular, parts 
3 and 4 of Theorem 2) was set up to provide. We shall pursue the analysis 
from the point of view of the order problem, partly for its own sake, but 
mainly as an illustration of how to proceed with an order analysis in other 
applied settings, such as higher order dynamical systems (especially in 
mechanics: see the conclusion in Section 6 for an overall description of the 
process). First we shall need a result of some interest outside the immedi- 
ate context. 

Definition. With k --> 1, let Q be the set of all x in Tk(M) such that, for 
some (necessarily unique) Xo in M, x = [ T k - l ( w )  o . . . .  W](x0). 

Proposition 3. For k - 1: 
1. Tk(V)(x) is in k§ if and only i f x  is in Q. 
2. Q = {x in Tk(M): Vk(x) is in k§ 

Proof. 1. I f x  = (Tk- I (V)  o . . .  o V)(xo) in Q, then Tk(x) is in k§ by 
part 4 of Proposition 2. 
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We argue the converse by induction on k. 
k = 1: Suppose T(V) ( x )  is in 2M. Then 

x = T(~r o o V ) (x )  = T(~ro)(T(V)(x))  = 7r l (T(V)(x) )  = ( e  o ~ro)(X) 

which is clearly in V(M), as required. 
Inductively, assume the result for k, and suppose Tk§  is in 

k+2 M.  Then 

x = Tk+l('rro o V ) (x )  

= Tk+l(Tro)(Tk+l(V)(x)) 

= ~rk+l(Tk+l(V)(x)) 

which is in k+~ M by part 1 of Proposition 2. But 

"rrk+l(Tk+l(V)(x)) = T k ( V ) o  'rrk(x) = T~(V) (~k (x ) )  

So, by the inductive hypothesis, "trk(x) = ( T k - l ( V )  o " "  o V)(Xo), say, whence 

x = Tk(V)Ork(x) )  = (T~(V)  o . . . .  V)(xo)  

and the induction is complete. 
2. Let y = V~(x) be in k+~ M. Simply apply the composite involution to 

y in reverse order to conclude that y = Tk(V) ( x ) ,  which is assumed to be in 
m M. Thus x itself must be in Q by part 1 of this proposition. 

Conversely, let x be in Q. Then, by part 4 of Proposition 2, T k ( V ) ( x )  is 
in k+lM. But then, by part 2 of Theorem 3, Vk(X) = Tk (V) (x ) .  Thus, Vk(x) is 
indeed in k+l M, as required. 

We now proceed with an order analysis of Vk in relation to Q, drawing 
on parts 2 and 3 of Theorem 3 for the structure of Vk, upon part 2 of 
Proposition 3 for the essential structure of  Q, and upon part 4 of Theorem 
2 as our main tool from general order theory. Note :  We assume, from this 
point on in the analysis, that N is an open set in K and that W is the standard 
tangential cross section there: W(t)  = (t, 1). We label the analysis: 

E x a m p l e  7 

1. Solutions g to y '  = V~(y) lying entirely in Q are the only ones  p o s s i b l e  
of the form g = ft~l. 

Proof .  This follows from part 2 of Proposition 3 and from the corollary 
to Theorem 1. 

2. Q can be regarded as a strongly embedded submanifold in T k ( M ) .  
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Proof. Let i: Q ---> Tk(M) denote the inclusion map. Then 

Tk-l(V) o . . .  o V o ~o ~ "'" ~ ~k-l: Tk(M) ---> Tk(M) 

is a globally defined, differentiable map that serves as a left inverse for i. 
3. Vk and Tk(V) coincide on Q. 

Proof. By Proposition 2, part 4, T~(V) . . . .  o Vlies entirely in k+l M. Thus, 
by part 2 of Theorem 3, successive applications of the various involutions at 
this level can have no further effect. The result follows immediately. 

4. Vk is k-suitable relative to Q. 

Proof. By result 3 above, Vk(Q) = Tk(V)(Q). But, again by part 4 of 
Proposition 2 and the definition of Q, we know that Tk(V)(Q) is a subset of 
k+l M. Thus, Vk(Q) is contained in k+l M, and the result follows by (the station- 
ary version of) part 4 of the corollary to Theorem 1. 

5. V~ is closed relative to Q. 

Proof. Consider the embedding map Tk-I(V) o . . .  o V'. M ---> T~(M). 
This carries M (diffeomorphically) onto the submanifold Q in Tk(M). Let h: 
M---> Q be the diffeomorphism such that i o h = T k- l(V) o--- o V Then we have 

T(i)(T(Q)) 
= T(i)(T(h)(T(M)) 
= T(i o h)(T(M)) 
= (Tk(V) . . . . .  T(V))(T(M)) 

Now, V(M) is contained in T(M). Thus, from the preceding computation of 
T(i)(T(Q)), we see that T(i)(T(Q)) contains [Tk(V) . . . . .  T(V) o V](M). That 
is, T(i)(T(Q)) contains Tk(V)(Q). But, by result 3 above, Tk(V) and Vk coincide 
on Q. In summary, therefore, T(i)(T(Q)) contains Vk(Q); that is, Vk meets the 
closure criterion in relation to Q. 

6. Vk is completely k-integrable relative to Q. 

Proof. This follows immediately from items 2, 4, and 5 above, and part 
4 of Theorem 2. 

This concludes our order analysis for Example 7. Observe that we have 
two significant pieces of information now that we did not have simply as a 
result of the manipulations in part 4 of Theorem 3: 

(a) Vk is completely integrable relative to the strongly embedded sub- 
manifold Q in Tk(M). 

(b) A solution g to u' = V~(u) has the form g = j~kl if and only if g 
lies entirely in Q. 

If we were in the context of a higher order dynamical system (especially in 
mechanics), the order study phase would at this point be regarded as complete, 
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and one could (with a justifiable sense of  confidence in the overall meaning 
of the model) proceed with qualitative studies (periodicity, various questions 
of stability) and asymptotic studies on Vk in relation to Q. We return to the 
dynamical application in Section 6. 

There is one further tool/technique useful in the analysis of  a stationary 
vector field V." Tk(M) ---> Tk+1(M). Namely, given a nonempty subset P in 
Tk(M), by the k-crucial set for  V in P we shall mean the subset of P, to be 
denoted pV, consisting of all x in P for which V(x) is in k+l M. [pV could turn 
otlt to be empty, of  course. But, looking back at the involution context and 
part 2 of  Proposition 3, note the vital role played in the order analysis by 
the fact that Q turned out to be (Tk(M)) vk. Indeed, in any higher order 
dynamical study of a vector field V defined on Tk(M), lacking inspiration or 
insider information, the most natural candidate the investigator might wish 
to examine in relation to V is the subset Q = (Tk(M)) V - -  ( k M )  ( ]  

It is by no means automatic that pv will turn out to be a strongly 
embedded submanifold in T~(M), as happened in Example 7. But observe 
that, by Theorem l, any solution g to Y~v = V(y) that lies entirely in P and 
is of  the form g = j4kl must also lie entirely in the subset pV. Now suppose 
pV happens to be a (strongly) embedded submanifold in T~(M). Then the 
solution g as above can be expressed g = i o h, where h is differentiable into 
pV. But then g~, = T(i) o h~v. In summary, g must lie entirely in pv and g'w 
must lie entirely in T(i)(T(PV)). By the same token, g~v = V o g must lie in 
V(PV). Thus, one would hope to make progress in any order analysis by 
studying the structure of the intersection of V(P v) with T(i)(T(PV)). In particu- 
lar, this is useful when P -- kM. 

5. E X A M P L E S  1 - 6  R E V I S I T E D  

Note that, by an easy calculation, 

2K -- {(Xoo . . . . .  Xll): Xol :- Xlo} 

3K = {(X0oo . . . . .  XlII) ." X0ot = X0to = xl0o and x01t = Xiol = X l l 0 }  

[Indeed, using a binary multiindexing scheme for coordinate values as above, 
a relatively easy inductive argument leads to the following result: kK consists 
of all (x0...0 . . . . .  X l . . . 1 )  such that Xir..ik = Xjr..jk whenever ii + "'" + ik = 
j l  + "'" +A . ]  

Example 1 

T(K) v = {(0, x): x is in K}, which is certainly a (strongly) embedded 
submanifold in T(K). By definition, V(T(K) v) is contained in 2K. However, 
V(T(K) v) = {(0, x, x, 0)" x in K}, which meets T(i)(T(T(K)V)) = {(0, x, 0, 
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y): x, y are in K} only in the singleton {(0, 0, 0, 0)}. Thus, from the previous 
reasoning on k-crucial sets, the only possible candidate for a set relative to 
which V is 1-suitable is Q0,0 = {(0, 0)}. And, indeed, V(Qo,o) is contained 
in the intersection of T(i)(T(Qo,o)) with 2K--whence, by Theorem 2, V is 
completely 1-integrable relative to Q0.0. In summary, the only solutions g to 
y '  = V(y) of the form f '  are those lying entirely in Q0.0. 

On the other hand, we can use general order analysis to find all constant 
solutions to y '  = V(y). Namely, let (x, y) be arbitrary in T(K) and consider 
the singleton {(x, y)} = Qx,r As with any singleton manifold, T(i)(T(Qx,y)) 
= { (x, y, 0, 0)}. Thus, to fulfill the requirements of closure (Theorem 2, part 
3), we are looking for the singular points (x, y) of V. Easily, V(x, y) = (x, y, 
0, 0) if and only if x = y. Thus, the constant solutions g = (go, gl) to y' = 
V(y) are all g of the form g --- (B, B), say, where B in K is arbitrary. (As we 
have seen, one of these, when B = 0, represents the only solution g of the 
form g = g~.) 

Perhaps somewhat unfairly (but not by much), one realizes from the 
algebra of V that any solution g = (go, gl) to y' = V(y) requires dldt[gl(t)] - 
0, whence gt is necessarily constant. Thus, V cannot be completely integrable 
relative, say, to the trace of any K-curve that is not a subset of the diagonal, 
but permits some degree of continuous variation in the second variable. Thus, 
for complete integrability, one is led to examine, for instance, submanifolds 
of the form Qt,a = {(x, B): x is in I}, where I is open in K, and where B is 
an arbitrary constant in K. Easily, T(i)(T(Qt.B)) = {(x, B, y, 0): x in L y in K}, 
which clearly contains V(QI, B). Thus, by the closure criterion, V is completely 
integrable relative to Qt.s. Of course, no such Qt.a is 1-suitable, since it 
contains points (and, therefore, initial value solutions) other than (0, 0). 

Example 2 

Here, (T2(K)) v = {(u, v, v, 0): u and v are in K}. Then 

T(i)(T(T2(K)V)) = {(u, v, v, 0; x, y, y, 0): u, v, x, and y are in K} 

and V((T2(K)) v) is surely contained in the latter set. Thus, V is closed (=  
completely integrable) relative to (T2(K)) v. Then the only possible solutions 
g of the form g = f[2l can be written 

g(t) = (go(t), gl(t), gl(t), 0) 

= (go(t), dldt[go(t)], dldt[go(t)], d21dt2[go(t)]) 

One notes, not unfairly, that g = g~21 requires d21dt2[go(t)] -- O, whence go(t) 
= Rt 2 + St + U, say. Pressing further, then, d/dt[go(t)] = 2Rt + S = gl(t) 
forces 2R = dldt[gl(t)] - O, whence R = 0. Thus, there being no other 
constraints, it must be the case that g = g~21 happens precisely when go(t) = 
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St + U. In summary, we have been led (correctly) to case 3 in the example 
primarily just from order considerations. 

Example  3 

Let g = (go, gl) represent any solution to y '  = V(t, y). We note (again, 
not unfairly) that d/dt[gl(t)] -~ 0 forces gl(t)  =- B,  say, where B i s  a constant 
in K. Thus g must lie entirely in the submanifold Qa = {(x, B): x in K}. 
Now T(i)(T(QB)) = {(x, B, y, 0): x and y in K}, which clearly contains V ( K  
• Qn). Thus, V is closed (=  completely integrable) relative to QB- 

On the other hand, V(K  • (28) is far from being contained in 2 K, whence 
(since V is completely integrable over QB) V is not 1-suitable over Qs- 
Nevertheless, we can use the order machinery to analyze the putative solution 
g more deeply. By Theorem 1 (or its corollary) we must have V(t, g(t))  
always in 2K for g to be of the form g = gr. That is, we must have: 

(i) 1 + (t - go(t)) z =-- B. 
At the same time d/dt[go(t)] = gl(t)  = B demands that: 
(ii) go(t) = B t  + A,  say. 
Substituting the form (ii) into equation (i) yields the requirement: 
(iii) 1 + (t - [Bt + A]) 2 --- B, which can happen if and only if B = 1 

andA = 0. 
Thus, led by order considerations, we have narrowed the possibilities 

for a solution to have the form g = g6 down to a single function: g(t) = (t, 
1). One verifies directly that this g does indeed satisfy the original equation. 

In summary: 

(a) For B :/: 1, V is not 1-suitable over Qn, because it is completely 
integrable there, but does not contain our solution g(t) = (t, 1). 

(b) For B = 1, even though Qa does contain g(t) = (t, 1), V is still 
not 1-suitable over Qn, since Qn contains other solutions to initial 
value problems as well, namely, (V, to, (x0, 1)), where to :/: Xo. 

Example  4 

We note that, if g = (go, gO represents any solution to y = V(t, y),  then 
dldt[gl(t)] - 1 forces gl(t) = t + B, say. But V(t, (go(t), t + B))  = (go(t), t 
+ B, t, 1) lies entirely in 2K if and only if B = 0. Thus, if g is to have the 
form g = gr, then gl( t )  = t is forced. Continuing, then, d/dt[go(t)] = gl(t) 
forces go(t) = i l l2 + A ,  say. Finally, one verifies directly that, for such a g, 
g' ( t )  = V(t, g(t)) .  Thus, we have easily found all solutions to y '  = V(t, y)  
having the form g = gr: they comprise a one-parameter (A) family g(t)  = 
(il l2 + A,  t). 

Now consider any of the solution manifolds QA = {( r2/2 + A, r): r is 
in K }. One calculates that 
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T(i)(T(QA)) = {(r2/2 + A, r, 2ry, y): r a n d y  in K} 

Thus, V(t, (s212 + A, s)) = (s2/2 + A, s, t, 1) is in T(i)(T(QA)) if and only 
if t = 2s. Thus, from general principles, V cannot be completely integrable 
relative to Qa, since V is not closed relative to QA. 

However, we can press the foregoing analysis a bit further. Let g = (go, 
gl) be any solution to y '  = V(t, y) lying entirely in QA. As noted earlier, we 
necessarily have gl(t) = t + B, say. Then, to have g(t)= (go(t), t + B) lie 
entirely in Qa would require go(t) = (t + B)212 + A. But V(t, g(t)) = g'(t) 
requires dldt[go(t)] = t. That is, B = 0 is forced. In summary, go(t) = t2/2 
+ A and gl(t) = t are both forced if g lies entirely in QA. Thus, the only 
solution to y' = V(t, y) lying entirely in QA is the one from our one-parameter 
family of lifted solutions above that parametrizes QA. Hence, V is indeed l- 
suitable relative to Qa (but far from being completely integrable there). 

Note. As indicated in the remark following the corollary to Theorem 1, 
Example 4 is a counterexample to the notion that V k-suitable with respect 
to a submanifold Q might imply that V(N • Q) is contained in k+l M. For, 
in the situation at hand, V is 1-suitable relative to QA, but, as one readily 
calculates, V(t, (s212 + A, s)) is in 2 K only if s = t. And the circumstance 
cannot be remedied by shrinking the independent variable domain for t to a 
smaller open set U in K. 

Example 5 

Our analytic strategy here is strictly a matter of applying the basic 
general order theory with no "special" observations. For each j = 1 . . . . .  5, 
we compute T(i)(T(Qj)) and V(Qj). Then we compare V(Qj) set-theoretically 
with both T(i)(T(Qj)) and 3K, drawing the appropriate conclusions. 

Ql: T(i)(T(QO) = {(u, v, v, w; x, y, y, z): w 4: 0} while V(QO = {(u, 
v, v, w; v, 0, 0, 0): w 4: 0}. Thus, V(QO c_ T(i)(T(QO), but V(QO f~ 3 K is 
empty. So, V is completely integrable over QI, but QI contains no solutions 
of the form g = g~.  

Q2: T(i)(T(Q2)) = {(0, v, v, w; 0, y, y, z): v 4 : 0  4: w}, while V(Q2) = 
{(0, v, v, w; v, 0, 0, 0): v 4 : 0  4: w}. Thus, V(Q2) f) T(i)(T(Q2)) is empty, 
which means Q2 contains no solutions at all (and V is therefore vacuously 
2-suitable over Q2). Note that V(Q2) N 3 K is also empty. 

03: T(i)(T(Q3)) = {(u, v, v, 0; x, y, y, 0): u, v, x, y in K}, while V(Q3) 
= {(u, v, v, 0; v, 0, 0, 0): u, v are in K}. Thus, V(Q3 ) is contained in T(i)(T(Q3)) 
A 3K, whence V is completely 2-integrable over Q3. Note also that Q3 = 
(T2(K)) v, so that Q3 contains all solutions g of the form g = g~ .  

Q4: T(i)(T(Q4)) = {(0, v, v, 0; 0, y, y, 0): v 4: 0}, while V(Q4) = {(0, 
v, v, 0; v, 0, 0, 0): v 4: 0}. Thus, V(Q4) N T(i)(T(Q4)) is empty, whence Q4 
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contains no solutions at all. Again, then, V is vacuously 2-suitable relative 
to Q4. In contrast to the situation with Q2, however, this time we have V(Q4) 
_C3K. 

Q5: T(i)(T(Qs)) = {(u, v, 0, 0; x, y, 0, 0): v :/: 0}, while V(Qs) = {(u, 
v, 0, 0; v, 0, 0, 0): v :/: 0}. Thus, V(Qs) C T(i)(T(Qs)), but V(Qs) tq 3 K is 
empty. In fact Q5 tq 2 K is empty. Thus, V is completely integrable over Qs, 
but Q5 contains no solutions of the form g = g~ .  

Example 6 

As in Example 5, we apply the general order theory in its most straightfor- 
ward aspects, with a final easy computation of solutions at the end. 

QI: T(i)(T(Ql)) = {(u, v, v, w; x, y, y, z): w :/: 0}, while V(Ql) = {(u, 
v, v, w; v, 0, w, 0): w :~ 0}. Thus, V(QO tq T(i)(T(Q0) is empty. So, no 
solutions at all lie in Q~, whence V is vacuously 2-suitable relative to QI, 
even though V(QO t') K3 is also empty. 

Q2: (T(i)(T(Q2)) = {(u, v, v, 0; x, y, y, 0): u, v, x, y in K}, while V(Q2) 
= {(u, v, v, 0; v, 0, 0, 0): u, v are in K}. Thus, V(Q2) C T(i)(T(Q2)) N 3 K. 
Hence, V is completely 2-integrable relative to Q2. 

Note that Q2 = (T2(K)) v, so Q2 contains all solutions g of the form g 
= g[~. We can easily compute the generic form for goo here. Namely, d/ 
dt[gol(t)] ~- 0 requires gol(t) -- B -- dldt[goo(t)]. Thus, the generic goo must 
have the form goo(t) = Bt + A. And one easily verifies that, for such a goo, 
g[~ does indeed satisfy y'  = V(y). 

6. CONCLUSION 

The heart of the general order theory presented here is simply Theorem 
1 with its various ramifications and uses. Principally, Theorem 1 and its 
corollary show that, as regards ODEs over M, it makes no sense to even 
consider vector fields V outside the framework of the spaces kM, kM', and 
k§ M. For, any solution g to y '  = V(t, y) which has the form g = flkJ must 
lie entirely in kM, and g' = flk§ must lie entirely in k+l M. Furthermore, any 
solution g to y '  = V(t, y) lying entirely in kM must have g'  lying entirely 
in kM'. 

Now the spaces kM, kM', and k+l M are not new as objects of mathemati- 
cal study or use. They can be regarded as strongly embedded submanifolds 
in Tk(M), Tk+l(M), and Tk+l(M), respectively. They can also be regarded as 
diffeomorphic copies, respectively, of the restricted tangential extensions kM, 
T(kM), and k+lM introduced by Bowman (1970a). Long before the latter 
globalization, local versions of kM, T(kM), and k§ served as the tacit 
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framework for the entire discipline known as extensor analysis. [See Craig 
(1943, 1964) for a comprehensive treatment of extensor analysis.] 

What is new here is the demonstration that the spaces kM, kM', and 
~+l M play a central governing role in regard to higher order ODEs over M. 
Indeed, if one takes into account the diffeomorphisms with the Bowman 
spaces alluded to above, the full ambient spaces Tk(M) and Tk+l(M) are 
superfluous. 

The application of general order studies to higher order dynamical studies 
can be put in the form of an agenda that is unavoidable if initial value 
problems retain their significance and if one requires that solutions to vector 
field equations be differential lifts of curves from the underlying configuration 
space M. The author's immediate model for the methodology itself (though 
certainly not a model for higher order physical law) is the involution/complete 
lift s tudy--Theorem 3, Proposition 3, and Example 7--carried out in the 
present paper. To be concrete, let us focus on mechanics. Let us accept as 
facts (they are) that kM is a strongly embedded submanifold in Tk(M) and 
that, with i: kM---> Tk(M) denoting the inclusion map, T(i)(T(kM)) = kM'. 

1. Define a regular Lagrangian L: T(kM ) --> R as one would over any 
manifold: there is nothing special in the phrase "higher order." By a well- 
established procedure one derives the associated Hamiltonian vector field 
VL: T(kM) --~ T2(kM), secure in the knowledge that any solution g to y '  = 
VL(y) has the form g = h' ,  where h lies entirely in ~M. But it is not generally 
the case that (i o h) takes the form (i o h) = fl~J, where f lies in M. Indeed, 
the latter circumstance would require, by Theorem 1, that (i o h)' = T(i) o 
h' = T(i) o g lie entirely in k+tM. But k+~M is a proper subset of kM = 
T(i)(T(kM)), whence T(i)- l(k+ 1 M) is a proper subset of T(kM). Simply choose 
any p in T(kM) such that p is not in T(i)-l(k§ With Vt. smooth we can, 
for instance, solve the initial value problem (VL, 0, p). But the solution g 
will clearly not have the property that T(i) o g lies entirely in k§ M. Hence, 
for the associated h lying in kM, we cannot have (i o h) = ft~J. In summary, 
for k > 0, we are always faced with an order problem for VL, even though 
we have been careful to start by building the dynamical structure relative to 
kM rather than relative to all of Tk(M). 

2. Rewording parts 3 and 4 of Theorem 2 to fit the immediate circum- 
stance, we have: 

Theorem 4. Let L: T(kM) ---> R be a regular Lagrangian, with Vt.: T(kM) 
---> T2(kM) the associated Hamiltonian vector field. Let i: kM ~ Tk(M) denote 
the inclusion map. Let Q be a strongly embedded submanifold in T(kM). 
Then VL is completely (k + 1)-integrable relative to Q if and only if (a) VL 
is closed relative to Q, and (b) "rrk and T('rrk-0 agree on T(i)(Q). 
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Proof. On the one hand, by Theorem 2 part 3, closure [condition (a)] 
is the criterion for complete integrability. On the other hand, by Theorem 1, 
part 1, T(i) carries T(kM) to kM', whence it also carries the subset Q into 
kM'. Thus, condition (b) really amounts to saying that T(i) carries Q into 
k§ M, which is precisely what is needed for (k + 1)-suitability in this context. 

So step 2 in the agenda comes down to finding one or more Q satisfying 
the conditions of Theorem 4. Such Q will serve as total subuniverses of 
motion in regard to y' = VL(Y). 

3. Pursue qualitative and asymptotic studies of VL in relation to Q. 
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